Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 208: 108483, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38457948

RESUMO

Plants produce a myriad of specialized compounds in response to threats such as pathogens or pests and different abiotic factors. The stress-related induction of specialized metabolites can be mimicked using silver nitrate (AgNO3) as an elicitor, which application in conservation agriculture has gained interest. In Arabidopsis thaliana, AgNO3 triggers the accumulation of indole glucosinolates (IGs) and the phytoalexin camalexin as well as pheylpropanoid-derived defensive metabolites such as coumaroylagmatins and scopoletin through a yet unknown mechanism. In this work, the role of jasmonic (JA) and salicylic acid (SA) signaling in the AgNO3-triggered specialized metabolite production was investigated. To attain this objective, AgNO3, MeJA and SA were applied to A. thaliana lines impaired in JA or SA signaling, or affected in the endogenous levels of IGs and AGs. Metabolomics data indicated that AgNO3 elicitation required an intact JA and SA signaling to elicit the metabolic response, although mutants impaired in hormone signaling retained certain capacity to induce specialized metabolites. In turn, plants overproducing or abolishing IGs production had also an altered hormonal signaling response, both in the accumulation of signaling molecules and the molecular response mechanisms (ORA59, PDF1.2, VSP2 and PR1 gene expression), which pointed out to a crosstalk between defense hormones and specialized metabolites. The present work provides evidence of a crosstalk mechanism between JA and SA underlying AgNO3 defense metabolite elicitation in A. thaliana. In this mechanism, IGs would act as retrograde feedback signals dampening the hormonal response; hence, expanding the signaling molecule concept.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Nitrato de Prata/farmacologia , Oxilipinas/farmacologia , Ciclopentanos/farmacologia , Ácido Salicílico/farmacologia , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética
2.
Plant J ; 117(6): 1746-1763, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38284474

RESUMO

Crops often have to face several abiotic stresses simultaneously, and under these conditions, the plant's response significantly differs from that observed under a single stress. However, up to the present, most of the molecular markers identified for increasing plant stress tolerance have been characterized under single abiotic stresses, which explains the unexpected results found when plants are tested under real field conditions. One important regulator of the plant's responses to abiotic stresses is abscisic acid (ABA). The ABA signaling system engages many stress-responsive genes, but many others do not respond to ABA treatments. Thus, the ABA-independent pathway, which is still largely unknown, involves multiple signaling pathways and important molecular components necessary for the plant's adaptation to climate change. In the present study, ABA-deficient tomato mutants (flacca, flc) were subjected to salinity, heat, or their combination. An in-depth RNA-seq analysis revealed that the combination of salinity and heat led to a strong reprogramming of the tomato transcriptome. Thus, of the 685 genes that were specifically regulated under this combination in our flc mutants, 463 genes were regulated by ABA-independent systems. Among these genes, we identified six transcription factors (TFs) that were significantly regulated, belonging to the R2R3-MYB family. A protein-protein interaction network showed that the TFs SlMYB50 and SlMYB86 were directly involved in the upregulation of the flavonol biosynthetic pathway-related genes. One of the most novel findings of the study is the identification of the involvement of some important ABA-independent TFs in the specific plant response to abiotic stress combination. Considering that ABA levels dramatically change in response to environmental factors, the study of ABA-independent genes that are specifically regulated under stress combination may provide a remarkable tool for increasing plant resilience to climate change.


Assuntos
Ácido Abscísico , Solanum lycopersicum , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Transcriptoma , Solanum lycopersicum/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Redox Biol ; 67: 102902, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37797370

RESUMO

The interaction between plants and phytophagous arthropods encompasses a complex network of molecules, signals, and pathways to overcome defences generated by each interacting organism. Although most of the elements and modulators involved in this interplay are still unidentified, plant redox homeostasis and signalling are essential for the establishment of defence responses. Here, focusing on the response of Arabidopsis thaliana to the spider mite Tetranychus urticae, we demonstrate the involvement in plant defence of the thioredoxin TRXh5, a small redox protein whose expression is induced by mite infestation. TRXh5 is localized in the cell membrane system and cytoplasm and is associated with alterations in the content of reactive oxygen and nitrogen species. Protein S-nitrosylation signal in TRXh5 over-expression lines is decreased and alteration in TRXh5 level produces changes in the JA/SA hormonal crosstalk of infested plants. Moreover, TRXh5 interacts and likely regulates the redox state of an uncharacterized receptor-like kinase, named THIOREDOXIN INTERACTING RECEPTOR KINASE (TIRK), also induced by mite herbivory. Feeding bioassays performed withTRXh5 over-expression plants result in lower leaf damage and reduced egg accumulation after T. urticae infestation than in wild-type (WT) plants. In contrast, mites cause a more severe injury in trxh5 mutant lines where a greater number of eggs accumulates. Likewise, analysis of TIRK-gain and -loss-of-function lines demonstrate the defence role of this receptor in Arabidopsis against T. urticae. Altogether, our findings demonstrate the interaction between TRXh5 and TIRK and highlight the importance of TRXh5 and TIRK in the establishment of effective Arabidopsis defences against spider mite herbivory.


Assuntos
Arabidopsis , Tetranychidae , Animais , Arabidopsis/genética , Tetranychidae/genética , Plantas , Tiorredoxinas/genética , Homeostase
4.
Plant Physiol ; 193(4): 2605-2621, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37437113

RESUMO

Composite generalist herbivores are comprised of host-adapted populations that retain the ability to shift hosts. The degree and overlap of mechanisms used by host-adapted generalist and specialist herbivores to overcome the same host plant defenses are largely unknown. Tetranychidae mites are exceptionally suited to address the relationship between host adaptation and specialization in herbivores as this group harbors closely related species with remarkably different host ranges-an extreme generalist the two-spotted spider mite (Tetranychus urticae Koch [Tu]) and the Solanaceous specialist Tetranychus evansi (Te). Here, we used tomato-adapted two-spotted spider mite (Tu-A) and Te populations to compare mechanisms underlying their host adaptation and specialization. We show that both mites attenuate induced tomato defenses, including protease inhibitors (PIs) that target mite cathepsin L digestive proteases. While Te solely relies on transcriptional attenuation of PI induction, Tu and Tu-A have elevated constitutive activity of cathepsin L proteases, making them less susceptible to plant anti-digestive proteins. Tu-A and Te also rely on detoxification of tomato constitutive defenses. Te uses esterase and P450 activities, while Tu-A depends on the activity of all major detoxification enzymatic classes to disarm tomato defensive compounds to a lesser extent. Thus, even though both Tu-A and Te use similar mechanisms to counteract tomato defenses, Te can better cope with them. This finding is congruent with the ecological and evolutionary times required to establish mite adaptation and specialization states, respectively.


Assuntos
Tetranychidae , Animais , Adaptação ao Hospedeiro , Catepsina L , Plantas , Evolução Biológica , Herbivoria
5.
Plants (Basel) ; 12(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36986902

RESUMO

Garlic is cultivated worldwide for the value of its bulbs, but its cultivation is challenged by the infertility of commercial cultivars and the accumulation of pathogens over time, which occurs as a consequence of vegetative (clonal) propagation. In this review, we summarize the state of the art of garlic genetics and genomics, highlighting recent developments that will lead to its development as a modern crop, including the restoration of sexual reproduction in some garlic strains. The set of tools available to the breeder currently includes a chromosome-scale assembly of the garlic genome and multiple transcriptome assemblies that are furthering our understanding of the molecular processes underlying important traits like the infertility, the induction of flowering and bulbing, the organoleptic properties and resistance to various pathogens.

6.
Int J Mol Sci ; 24(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36768850

RESUMO

The selection of plant genotypes with improved productivity and tolerance to environmental constraints has always been a major concern in plant breeding. Classical approaches based on the generation of variability and selection of better phenotypes from large variant collections have improved their efficacy and processivity due to the implementation of molecular biology techniques, particularly genomics, Next Generation Sequencing and other omics such as proteomics and metabolomics. In this regard, the identification of interesting variants before they develop the phenotype trait of interest with molecular markers has advanced the breeding process of new varieties. Moreover, the correlation of phenotype or biochemical traits with gene expression or protein abundance has boosted the identification of potential new regulators of the traits of interest, using a relatively low number of variants. These important breakthrough technologies, built on top of classical approaches, will be improved in the future by including the spatial variable, allowing the identification of gene(s) involved in key processes at the tissue and cell levels.


Assuntos
Genômica , Melhoramento Vegetal , Proteômica , Plantas/genética , Genótipo
7.
Physiol Plant ; 174(1): e13547, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34480798

RESUMO

During the last years, a great effort has been dedicated at the development and employment of diverse approaches for achieving more stress-tolerant and climate-flexible crops and sustainable yield increases to meet the food and energy demands of the future. The ongoing climate change is in fact leading to more frequent extreme events with a negative impact on food production, such as increased temperatures, drought, and soil salinization as well as invasive arthropod pests and diseases. In this review, diverse "green strategies" (e.g., chemical priming, root-associated microorganisms), and advanced technologies (e.g., genome editing, high-throughput phenotyping) are described on the basis of the most recent research evidence. Particularly, attention has been focused on the potential use in a context of sustainable and climate-smart agriculture (the so called "next agriculture generation") to improve plant tolerance and resilience to abiotic and biotic stresses. In addition, the gap between the results obtained in controlled experiments and those from application of these technologies in real field conditions (lab to field step) is also discussed.


Assuntos
Produtos Agrícolas , Estresse Fisiológico , Agricultura , Mudança Climática , Produtos Agrícolas/genética , Secas , Estresse Fisiológico/genética
8.
Hortic Res ; 8(1): 261, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34848702

RESUMO

DORMANCY-ASSOCIATED MADS-BOX (DAM) genes have recently emerged as key potential regulators of the dormancy cycle and climate adaptation in perennial species. Particularly, PpeDAM6 has been proposed to act as a major repressor of bud dormancy release and bud break in peach (Prunus persica). PpeDAM6 expression is downregulated concomitantly with the perception of a given genotype-dependent accumulation of winter chilling time, and the coincident enrichment in H3K27me3 chromatin modification at a specific genomic region. We have identified three peach BASIC PENTACYSTEINE PROTEINs (PpeBPCs) interacting with two GA-repeat motifs present in this H3K27me3-enriched region. Moreover, PpeBPC1 represses PpeDAM6 promoter activity by transient expression experiments. On the other hand, the heterologous overexpression of PpeDAM6 in European plum (Prunus domestica) alters plant vegetative growth, resulting in dwarf plants tending toward shoot meristem collapse. These alterations in vegetative growth of transgenic lines associate with impaired hormone homeostasis due to the modulation of genes involved in jasmonic acid, cytokinin, abscisic acid, and gibberellin pathways, and the downregulation of shoot meristem factors, specifically in transgenic leaf and apical tissues. The expression of many of these genes is also modified in flower buds of peach concomitantly with PpeDAM6 downregulation, which suggests a role of hormone homeostasis mechanisms in PpeDAM6-dependent maintenance of floral bud dormancy and growth repression.

9.
Plant Physiol Biochem ; 168: 432-446, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34715568

RESUMO

Water-deficit stress is the most important abiotic stress restricting plant growth, development and yield. The effects of this stress, however, depend on genotypes, among other factors. This study assembles morpho-physiological and metabolic approaches to assess hormonal and metabolic profile changes, upon water-deficit stress, in the shoot and roots of two contrasting sunflower inbred lines, B59 (water-deficit stress sensitive) and B71 (water-deficit stress tolerant). The analyses were carried out using mass spectrometry and performing a multivariate statistical analysis to identify relationships between the analyzed variables. Water-deficit stress reduced all morpho-physiological parameters, except for root length in the tolerant inbred line. The hormonal pathways were active in mediating the seedling performance to imposed water-deficit stress in both lines, although with some differences between lines at the organ level. B59 displayed a diverse metabolite battery, including organic acids, organic compounds as well as sugars, mainly in the shoot, whereas B71 showed primary amino acids, organic acids and organic compounds predominantly in its roots. The discrimination between control and water-deficit stress conditions was possible thanks to potential biomarkers of stress treatment, e.g., proline, maleic acid and malonic acid. This study indicated that the studied organs of sunflower seedlings have different mechanisms of regulation under water-deficit stress. These findings could help to better understand the physio-biochemical pathways underlying stress tolerance in sunflower at early-growth stage.


Assuntos
Helianthus , Desidratação , Espectrometria de Massas , Metaboloma , Água
10.
Plant Physiol ; 187(4): 2608-2622, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34618096

RESUMO

Genetic adaptation, occurring over a long evolutionary time, enables host-specialized herbivores to develop novel resistance traits and to efficiently counteract the defenses of a narrow range of host plants. In contrast, physiological acclimation, leading to the suppression and/or detoxification of host defenses, is hypothesized to enable broad generalists to shift between plant hosts. However, the host adaptation mechanisms used by generalists composed of host-adapted populations are not known. Two-spotted spider mite (TSSM; Tetranychus urticae) is an extreme generalist herbivore whose individual populations perform well only on a subset of potential hosts. We combined experimental evolution, Arabidopsis thaliana genetics, mite reverse genetics, and pharmacological approaches to examine mite host adaptation upon the shift of a bean (Phaseolus vulgaris)-adapted population to Arabidopsis. We showed that cytochrome P450 monooxygenases are required for mite adaptation to Arabidopsis. We identified activities of two tiers of P450s: general xenobiotic-responsive P450s that have a limited contribution to mite adaptation to Arabidopsis and adaptation-associated P450s that efficiently counteract Arabidopsis defenses. In approximately 25 generations of mite selection on Arabidopsis plants, mites evolved highly efficient detoxification-based adaptation, characteristic of specialist herbivores. This demonstrates that specialization to plant resistance traits can occur within the ecological timescale, enabling the TSSM to shift to novel plant hosts.


Assuntos
Adaptação Biológica , Arabidopsis/fisiologia , Proteínas de Artrópodes/genética , Sistema Enzimático do Citocromo P-450/genética , Herbivoria , Phaseolus/fisiologia , Tetranychidae/fisiologia , Animais , Proteínas de Artrópodes/metabolismo , Cadeia Alimentar , Tetranychidae/genética
11.
Plant Physiol ; 187(1): 116-132, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34618148

RESUMO

Arabidopsis (Arabidopsis thaliana) defenses against herbivores are regulated by the jasmonate (JA) hormonal signaling pathway, which leads to the production of a plethora of defense compounds. Arabidopsis defense compounds include tryptophan-derived metabolites, which limit Arabidopsis infestation by the generalist herbivore two-spotted spider mite, Tetranychus urticae. However, the phytochemicals responsible for Arabidopsis protection against T. urticae are unknown. Here, we used Arabidopsis mutants disrupted in the synthesis of tryptophan-derived secondary metabolites to identify phytochemicals involved in the defense against T. urticae. We show that of the three tryptophan-dependent pathways found in Arabidopsis, the indole glucosinolate (IG) pathway is necessary and sufficient to assure tryptophan-mediated defense against T. urticae. We demonstrate that all three IGs can limit T. urticae herbivory, but that they must be processed by myrosinases to hinder T. urticae oviposition. Putative IG breakdown products were detected in mite-infested leaves, suggesting in planta processing by myrosinases. Finally, we demonstrate that besides IGs, there are additional JA-regulated defenses that control T. urticae herbivory. Together, our results reveal the complexity of Arabidopsis defenses against T. urticae that rely on multiple IGs, specific myrosinases, and additional JA-dependent defenses.


Assuntos
Arabidopsis/fisiologia , Glucosinolatos/metabolismo , Glicosídeo Hidrolases/metabolismo , Herbivoria , Indóis/metabolismo , Defesa das Plantas contra Herbivoria , Proteínas de Plantas/metabolismo , Animais , Arabidopsis/enzimologia , Tetranychidae/fisiologia
12.
Curr Biol ; 31(16): 3678-3686.e11, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34214451

RESUMO

Plant survival depends on the optimal use of resources under variable environmental conditions. Among the mechanisms that mediate the balance between growth, differentiation, and stress responses, the regulation of transcriptional activity by DELLA proteins stands out. In angiosperms, DELLA accumulation promotes defense against biotic and abiotic stress and represses cell division and expansion, while the loss of DELLA function is associated with increased plant size and sensitivity toward stress.1 Given that DELLA protein stability is dependent on gibberellin (GA) levels2 and GA metabolism is influenced by the environment,3 this pathway is proposed to relay environmental information to the transcriptional programs that regulate growth and stress responses in angiosperms.4,5 However, DELLA genes are also found in bryophytes, whereas canonical GA receptors have been identified only in vascular plants.6-10 Thus, it is not clear whether these regulatory functions of DELLA predated or emerged with typical GA signaling. Here, we show that, as in vascular plants, the only DELLA in the liverwort Marchantia polymorpha also participates in the regulation of growth and key developmental processes and promotes oxidative stress tolerance. Moreover, part of these effects is likely caused by the conserved physical interaction with the MpPIF transcription factor. Therefore, we suggest that the role in the coordination of growth and stress responses was already encoded in the DELLA protein of the common ancestor of land plants, and the importance of this function is underscored by its conservation over the past 450 million years.


Assuntos
Giberelinas , Marchantia , Proteínas de Plantas/genética , Estresse Fisiológico , Regulação da Expressão Gênica de Plantas , Marchantia/genética , Marchantia/crescimento & desenvolvimento , Transdução de Sinais , Fatores de Transcrição
13.
Front Plant Sci ; 12: 690857, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34178007

RESUMO

Pine wilt disease (PWD), caused by the plant-parasitic nematode Bursaphelenchus xylophilus, has become a severe environmental problem in the Iberian Peninsula with devastating effects in Pinus pinaster forests. Despite the high levels of this species' susceptibility, previous studies reported heritable resistance in P. pinaster trees. Understanding the basis of this resistance can be of extreme relevance for future programs aiming at reducing the disease impact on P. pinaster forests. In this study, we highlighted the mechanisms possibly involved in P. pinaster resistance to PWD, by comparing the transcriptional changes between resistant and susceptible plants after infection. Our analysis revealed a higher number of differentially expressed genes (DEGs) in resistant plants (1,916) when compared with susceptible plants (1,226). Resistance to PWN is mediated by the induction of the jasmonic acid (JA) defense pathway, secondary metabolism pathways, lignin synthesis, oxidative stress response genes, and resistance genes. Quantification of the acetyl bromide-soluble lignin confirmed a significant increase of cell wall lignification of stem tissues around the inoculation zone in resistant plants. In addition to less lignified cell walls, susceptibility to the pine wood nematode seems associated with the activation of the salicylic acid (SA) defense pathway at 72 hpi, as revealed by the higher SA levels in the tissues of susceptible plants. Cell wall reinforcement and hormone signaling mechanisms seem therefore essential for a resistance response.

14.
Front Plant Sci ; 12: 661789, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33981326

RESUMO

Different environmental and developmental cues involve low oxygen conditions, particularly those associated to abiotic stress conditions. It is widely accepted that plant responses to low oxygen conditions are mainly regulated by ethylene (ET). However, interaction with other hormonal signaling pathways as gibberellins (GAs), auxin (IAA), or nitric oxide (NO) has been well-documented. In this network of interactions, abscisic acid (ABA) has always been present and regarded to as a negative regulator of the development of morphological adaptations to soil flooding: hyponastic growth, adventitious root emergence, or formation of secondary aerenchyma in different plant species. However, recent evidence points toward a positive role of this plant hormone on the modulation of plant responses to hypoxia and, more importantly, on the ability to recover during the post-hypoxic period. In this work, the involvement of ABA as an emerging regulator of plant responses to low oxygen conditions alone or in interaction with other hormones is reviewed and discussed.

15.
Front Plant Sci ; 12: 613059, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746996

RESUMO

Soil flooding is a compound abiotic stress that alters soil properties and limits atmospheric gas diffusion (O2 and CO2) to the roots. The involvement of abscisic acid (ABA) in the regulation of soil flooding-specific genetic and metabolic responses has been scarcely studied despite its key importance as regulator in other abiotic stress conditions. To attain this objective, wild type and ABA-deficient tomatoes were subjected to short-term (24 h) soil waterlogging. After this period, gas exchange parameters were reduced in the wild type but not in ABA-deficient plants that always had higher E and g s . Transcript and metabolite alterations were more intense in waterlogged tissues, with genotype-specific variations. Waterlogging reduced the ABA levels in the roots while inducing PYR/PYL/RCAR ABA receptors and ABA-dependent transcription factor transcripts, of which induction was less pronounced in the ABA-deficient genotype. Ethylene/O2-dependent genetic responses (ERFVIIs, plant anoxia survival responses, and genes involved in the N-degron pathway) were induced in hypoxic tissues independently of the genotype. Interestingly, genes encoding a nitrate reductase and a phytoglobin involved in NO biosynthesis and scavenging and ERFVII stability were induced in waterlogged tissues, but to a lower extent in ABA-deficient tomato. At the metabolic level, flooding-induced accumulation of Ala was enhanced in ABA-deficient lines following a differential accumulation of Glu and Asp in both hypoxic and aerated tissues, supporting their involvement as sources of oxalacetate to feed the tricarboxylic acid cycle in waterlogged tissues and constituting a potential advantage upon long periods of soil waterlogging. The promoter analysis of upregulated genes indicated that the production of oxalacetate from Asp via Asp oxidase, energy processes such as acetyl-CoA, ATP, and starch biosynthesis, and the lignification process were likely subjected to ABA regulation. Taken together, these data indicate that ABA depletion in waterlogged tissues acts as a positive signal, inducing several specific genetic and metabolic responses to soil flooding.

16.
Physiol Plant ; 173(1): 223-234, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33629739

RESUMO

Cadmium is one of the most important contaminants and it induces severe plant growth restriction. In this study, we analyzed the metabolic changes associated with root growth restriction caused by cadmium in the early seminal root apex of wheat. Our study included two genotypes: the commercial variety ProINTA Federal (WT) and the PSARK ::IPT (IPT) line which exhibit high-grade yield performance under water deficit. Root tips of seedlings grown for 72 h without or with 10 µM CdCl2 (Cd-WT and Cd-IPT) were compared. Root length reduction was more severe in Cd-WT than Cd-IPT. Cd decreased superoxide dismutase activity in both lines and increased catalase activity only in the WT. In Cd-IPT, ascorbate and guaiacol peroxidase activities raised compared to Cd-WT. The hormonal homeostasis was altered by the metal, with significant decreases in abscisic acid, jasmonic acid, 12-oxophytodienoic acid, gibberellins GA20, and GA7 levels. Increases in flavonoids and phenylamides were also found. Root growth impairment was not associated with a decrease in expansin (EXP) transcripts. On the contrary, TaEXPB8 expression increased in the WT treated by Cd. Our findings suggest that the line expressing the PSARK ::IPT construction increased the homeostatic range to cope with Cd stress, which is visible by a lesser reduction of the root elongation compared to WT plants. The decline of root growth produced by Cd was associated with hormonal imbalance at the root apex level. We hypothesize that activation of phenolic secondary metabolism could enhance antioxidant defenses and contribute to cell wall reinforcement to deal with Cd toxicity.


Assuntos
Cádmio , Triticum , Alquil e Aril Transferases , Antioxidantes , Cádmio/toxicidade , Catalase , Raízes de Plantas/genética , Plântula/genética , Superóxido Dismutase , Triticum/genética
17.
Plants (Basel) ; 9(9)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878349

RESUMO

Interaction between plants and their environment is changing as a consequence of the climate change and global warming, increasing the performance and dispersal of some pest species which become invasive species. Tetranychus evansi also known as the tomato red spider mite, is an invasive species which has been reported to increase its performance when feeding in the tomato cultivar Moneymaker (MM) under water deficit conditions. In order to clarify the underlying molecular events involved, we examined early plant molecular changes occurring on MM during T. evansi infestation alone or in combination with moderate drought stress. Hormonal profiling of MM plants showed an increase in abscisic acid (ABA) levels in drought-stressed plants while salicylic acid (SA) levels were higher in drought-stressed plants infested with T. evansi, indicating that SA is involved in the regulation of plant responses to this stress combination. Changes in the expression of ABA-dependent DREB2, NCED1, and RAB18 genes confirmed the presence of drought-dependent molecular responses in tomato plants and indicated that these responses could be modulated by the tomato red spider mite. Tomato metabolic profiling identified 42 differentially altered compounds produced by T. evansi attack, moderate drought stress, and/or their combination, reinforcing the idea of putative manipulation of tomato plant responses by tomato red spider mite. Altogether, these results indicate that the tomato red spider mite acts modulating plant responses to moderate drought stress by interfering with the ABA and SA hormonal responses, providing new insights into the early events occurring on plant biotic and abiotic stress interaction.

18.
Protoplasma ; 257(4): 1243-1256, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32350742

RESUMO

Copper (Cu) interferes with numerous biological functions in plants, including plant growth, which is partly governed by plant hormones. In the present study, Cu stress effect on the roots of pre-emerging maize seedlings in terms of growth, nutrient composition, protein modifications, and root hormone homeostasis was investigated, focusing on possible metabolic differences between the root apex and the rest of the root tissues. Significant decreases in root length and root biomass after 72 h of Cu exposure (50 and 100 µM CuCl2), accompanied by reductions in Ca, Mg, and P root contents, were found. Cu also generated cell redox imbalance in both root tissues and revealed by altered enzymatic and non-enzymatic antioxidant defenses. Oxidative stress was evidenced by an increased protein carbonylation level in both tissues. Copper also induced protein ubiquitylation and SUMOylation and affected 20S proteasome peptidase activities in both tissues. Drastic reductions in ABA, IAA, JA (both free and conjugated), GA3, and GA4 levels in the root apex were detected under Cu stress. Our results show that Cu exposure generated oxidative damage and altered root hormonal homeostasis, mainly at the root apex, leading to a strong root growth inhibition. Severe protein post-translational modifications upon Cu exposure occurred in both tissues, suggesting that even when hormonal adjustments to cope with Cu stress occurred mainly at the root apex, the entire root is compromised in the protein turnover that seems to be necessary to trigger and/or to sustain defense mechanisms against Cu toxicity.


Assuntos
Cobre/química , Ciclopentanos/química , Giberelinas/química , Oxilipinas/química , Raízes de Plantas/química , Plântula/química , Zea mays/química
19.
Front Plant Sci ; 10: 427, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057569

RESUMO

The Mediterranean basin is especially sensitive to the adverse outcomes of climate change and especially to variations in rainfall patterns and the incidence of extremely high temperatures. These two concurring adverse environmental conditions will surely have a detrimental effect on crop performance and productivity that will be particularly severe on woody crops such as citrus, olive and grapevine that define the backbone of traditional Mediterranean agriculture. These woody species have been traditionally selected for traits such as improved fruit yield and quality or alteration in harvesting periods, leaving out traits related to plant field performance. This is currently a crucial aspect due to the progressive and imminent effects of global climate change. Although complete genome sequence exists for sweet orange (Citrus sinensis) and clementine (Citrus clementina), olive tree (Olea europaea) and grapevine (Vitis vinifera), the development of biotechnological tools to improve stress tolerance still relies on the study of the available genetic resources including interspecific hybrids, naturally occurring (or induced) polyploids and wild relatives under field conditions. To this respect, post-genomic era studies including transcriptomics, metabolomics and proteomics provide a wide and unbiased view of plant physiology and biochemistry under adverse environmental conditions that, along with high-throughput phenotyping, could contribute to the characterization of plant genotypes exhibiting physiological and/or genetic traits that are correlated to abiotic stress tolerance. The ultimate goal of precision agriculture is to improve crop productivity, in terms of yield and quality, making a sustainable use of land and water resources under adverse environmental conditions using all available biotechnological tools and high-throughput phenotyping. This review focuses on the current state-of-the-art of biotechnological tools such as high throughput -omics and phenotyping on grapevine, citrus and olive and their contribution to plant breeding programs.

20.
J Plant Physiol ; 238: 40-52, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31129470

RESUMO

Plant viral infections alter gene expression and metabolism in infected host. To study the molecular responses of Mexican lime to CTV infection, an analysis of plant metabolome in response to infection with severe (T318) or mild (T385) isolates of CTV was performed. Healthy plants and those infected with any of the two virus strains showed different metabolite profiles, at different stages of new sprout development. Proline content increased in plants infected with CTV, proportionally to the virulence of the virus strain. Abscisic acid content decreased after virus infection whereas jasmonic and salicylic acid levels increased. CTV infection had an impact on plant secondary metabolism, by stimulating the synthesis of different metabolites such as l-methylhistidine, phenylpropanoid derivatives. These metabolites are common responses of different organisms, including higher mammals, to viral diseases, and its presence in this system points to the existence of universal responses to virus infection among different kingdoms.


Assuntos
Citrus aurantiifolia/virologia , Closterovirus , Doenças das Plantas/virologia , Reguladores de Crescimento de Plantas/metabolismo , Citrus aurantiifolia/metabolismo , Citrus aurantiifolia/fisiologia , Ciclopentanos/metabolismo , Espectrometria de Massas , Metabolômica , Oxilipinas/metabolismo , Prolina/metabolismo , Ácido Salicílico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...